Volumetric & Transport Behavior of Neutral Amino Acids in Different Concentrations of an Electrolyte at 25°C

Authors

  • Vaneet Dhir Post Graduate Department of Chemistry, G.H.G Khalsa College, Gurusar Sadhar (Research Scholar, Punjab Technical University, Jalandhar) Author
  • R. P. Singh Grewal Professor, Guru Nanak Dev Engineering College (GNDEC), Ludhiana Author

DOI:

https://doi.org/10.53555/nnas.v2i2.686

Keywords:

Amino acids, Sodium nitrate, Partial molar volumes

Abstract

Apparent molar volumes, V2, of glycine, DL-?-alanine, DL-?-amino-n-butyric acid, L-valine, and L-leucine in water and in (0.25, 0.5, 0.75, 1.0, 1.5, 2.0) mol/kg aqueous potassium nitrate solutions have been determined at T= 298.15 K from density measurements. The standard partial molar volumes at infinite dilution, V20, obtained from V2, ?, have been used to calculate the corresponding volumes of transfer, ?tV0, from water to aqueous potassium nitrate solutions. The hydration number, nH, side chain contributions, and volumetric interaction coefficients of these amino acids have also been calculated. The ΔtV₀ values for the studied amino acids are positive, and these values increase with an increase in the concentration of NaNO₃. .

References

[1.] Chalikian T.V., Sarvazyan A.P., Breslauer K.J. Biophys. Chem. 51 (1994) 89-109.

[2.] Murphy L.R., Matubayasi N., Payne V.A., Levy R.M. Folding Des. 3 (1998) 105-118.

[3.] Sorenson J.M., Hura G., Soper A.K., Pertsemlidis A., Gaordon T., Head J. Phys. Chem. B 103 (1999) 5413-5426.

[4.] Jencks, W.P., Catalysis in Chemistry and Enzymology. McGraw-Hill, New York, 1969, pp. 351.

[5.] Von Hippel P.H., Schleich T., Acc. Chem. Res. 2 (1969) 257-265.

[6.] Bhat R., Ahluwalia J.C., Int. J. Peptide Protein Res. 30 (1987) 145-152.

[7.] Wadi R.K., Goyal R.K., J. Chem. Eng. Data. 37 (1992) 377-386.

[8.] Wadi R.K., Goyal R.K., J. Solution Chem. 21 (1992) 163-170.

[9.] Wadi R.K., Ramasami P., J. Chem. Soc. Faraday Trans. 93 (1997) (2) 243-247.

[10.] Natarajan M., Wadi R.K., Gaur H. C., J. Chem. Eng. Data 35 (1990) 87-93.

[11.] Soto A., Arce A., Khoshkbarchi M. K., Biophys. Chem. 76 (1999) 73-82.

[12.] Archer D. G., J. Phys. Chem. Ref. Data 21 (1992) 793-829.

[13.] Bhat R., Ahluwalia J. C., J. Phys. Chem. 89 (1985) 1099-1105.

[14.] Kharakoz D. P., Biophys. Chem. 34 (1989) 115-125.

[15.] Millero F. J., Ward G. K., Lepple F. K., Hoff E. V., J. Phys. Chem. 78 (1974) 1636-1643.

[16.] Hakin A.W., Duke M. M., Groft L. L., Marty J. L., Rushfeldt M. L., Can. J. Chem. 73 (1995) 725-734.

[17.] Hepler L. G., Can. J. Chem. 47 (1976) 359-367.

[18.] Gurney R.W., Ionic Processes in Solution, Vol. 3, McGraw Hill, New York, 1953 (Chapter 1).

[19.] Hofmeister F., Arch. Exp. Pathol. Pharmacol., 24 (1888) 247-260.

[20.] Yan Z., Wang J., Kong W., Lu J., Fluid Phase Equilib. 215 (2004) 143-150.

Downloads

Published

2015-02-28

How to Cite

Volumetric & Transport Behavior of Neutral Amino Acids in Different Concentrations of an Electrolyte at 25°C. (2015). Journal of Advance Research in Applied Science (ISSN 2208-2352), 2(2), 10-13. https://doi.org/10.53555/nnas.v2i2.686