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Abstract: -  
 In this research paper, we study the ranks and subdegrees of the symmetric group  Sn (n = 3, 4, 5) acting on ordered 

pairs from the set X = {1, 2 , … , n}. When Sn  (n ≥ 4) acts on ordered pairs from X, the rank is 7. Therefore the main study 

will be on the ranks and subdegrees of the suborbitals.  

The suborbital graphs corresponding to the suborbitals of these actions are also constructed. The graph theoretic 

properties of these suborbital graphs are also discussed. When Sn  (n ≥ 4) acts on ordered pairs, the suborbital graphs, 

Γ1,Γ2,Γ5, and Γ6 corresponding to the non-trivial suborbits, Δ1  ,Δ2 , Δ5and Δ6 are disconnected, regular and undirected. 

The suborbital graphs Γ3and Γ4 are disconnected, and directed.  

  

Key words: - Ranks, Subdegrees, Suborbitals, Suborbital graphs and Ordered pairs.  

  

   

Journal of Advance Research in Applied Science (ISSN: 2208-2352)

Vol. 3 No. 2 (2016) 32



INTRODUCTION  

In this paper we investigate some properties of the symmetric group Sn (n = 3, 4, 5) acting on ordered pairs from X = {1, 

2, … , n}. We also find suborbits  and suborbitals of Sn (n = 3, 4, 5) and construct suborbital graphs corresponding to 

these suborbitals.  We shall also discuss some of the graph theoretic properties of these suborbital graphs.  

This paper is divided into three parts; with our main results in part two.  

In part one, we give definitions and preliminary results needed throughout the paper.  

In part two, we investigate some properties of the action of Sn (n = 3, 4, 5) on ordered pairs.  We also find the ranks, 

suborbits and construct suborbital graphs corresponding to the suborbitals of Sn (n = 3, 4, 5). We also discuss the graph 

theoretic properties of these suborbital graphs.  Finally in part three, we give conclusions.  

  

DEFINITIONS AND PRELIMINARIES  

We establish background information and results that will be used throughout this paper. It is   

  

1.1 Notations  

∑i −  Sum over i.  

(b
a) - a combination b.  

Sn - Symmetric group of degree n and order n!.  

|G| - The order of a group G.  

|G: H| - Index of H in G.  

X[2] - The set of ordered pairs from the set X =  {1,2, … , n}.    

 (t,q)- Ordered pair.  

X×Y – Cartesian product of X and Y.  

  

  

1.2 Permutation groups  

Definition 1.2.1  

Let X be a non-empty set. A permutation of X is a one-to-one mapping of X onto itself.  

Definition 1.2.2  

Let X be the set {1,2,… , n}  , then the symmetric group of degree n is the group of all permutations of X under the binary 

operation of composition of maps. It is denoted as Snand has an order n!.  

Definition 1.2.3  

A permutation of a finite set is even or odd according as it can be expressed as the product of an even or odd number of 

2-cycles (transpositions).  

  

1.3 Group actions Definition 1.3.1  

Let X be a non-empty set. The group G acts on the left on X if for each g ∈ G and each  x ∈ X there corresponds a unique 

element gx ∈ X such that :  

(i) (g1g2) x = g1(g2x), ∀ g1, g2 ∈ G and x ∈ X.  

(ii) For any x ∈ X, 1x = x, where 1 is the identity in G. The action of G from the right on X can be defined in a similar 

way. Infact it is merely a matter of taste whether one writes the group element on the left or on the right.  

  

Definition 1.3.3  

Let G act on a set X. Then X is partitioned into disjoint equivalence classes called orbits or transitivity classes of the 

action. For each x ∈ X, the orbit containing x is called the orbit of x and is denoted by OrbG(x) .  

  

Definition 1.3.4  

Let G act on a set X and let x ∈ X. The stabilizer of x in G, denoted by  StabG(x) is given by StabG(x) = {g ∈ G|gx = x}.  

Note: StabG(x)  forms a subgroup of G which is called the isotropy group of x. This subgroup is denoted by Gx.  

 

Definition 1.3.5  

If a finite group G acts on a set X with n elements, each g ∈ G corresponds to a permutation 𝜎 of X, which can be written 

uniquely as a product of disjoint cycles. If σ has ∝1 cycles of length 1, ∝2 cycles of length 2, ∝3 cycles of length 3,…, ∝n 

cycles of length n; then we say that 𝜎 and hence g has a cycle type  (∝1,∝2, ∝3, … , ∝n).  

 

Definition 1.3.6   

Let G act on a set X. The set of elements of X fixed by g∈ G is called the fixed point set of g and is denoted by Fix(g). 

Thus Fix(g) = {x ∈ X|gx = x}.  

  

Definition 1.3.7  

If the action of a group G on a set X has only one orbit, then we say that G acts transitively on X. In other words, G acts 

transitively on X if for every pair of points x, y ∈ X, there exists g ∈ G such that gx = y.  

  

Theorem 1.3.8 [Krishnamurthy,1985, p. 68].   
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Two permutations in Snare conjugate if and only if, they have the same cycle type, and if  g ∈ S𝑛 has a cycle type (∝1, 

∝2,… ∝n), then the number of permutations in Sn conjugate to g is         

n! 

∏ni = 1 ∝i ! i∝i  . 

 

Theorem 1.3.9 [Orbit –Stabilizer theorem – Rose,1978, p. 72 ]  

Let G act on a set X and let x ∈ X, the  |OrbG (x)| =  |G: StabG (x)|.  

 

Theorem 1.3.10 [Cauchy − Frobenius Lemma − Rotman, 1973, p. 45. ]   

Let G be a group acting on a finite set X. then the number of G-orbits in X is  

 
 

The immediate theorem above is usually but erroneously attributed to Burnside (1911) cf. Neumann (1977).  

  

1.4 Graphs and digraphs Definition 1.4.1  

A graph is a diagram consisting of a set V whose elements are called vertices, nodes or points and a set E of unordered 

pairs of vertices called edges or lines. We denote such a graph by G(V,E) or simply by G if there is no ambiguity of V 

and E.    

 

Definition 1.4.2  

Two vertices u and v are said to be adjacent if there is an edge joining them. This is denoted by {u, v}and sometimes by 

uv. In this case u and v are said to be incident to such an edge.  

 

Definition 1.4.3  

A walk in a graph consists of a finite sequence of edges of the form v0, v1, v1, v2, … , vm−1,vm. The number m of edges in 

the walk above is called the length of the walk. A walk is said to be closed if v0 = vm. A trail is a walk in which all edges 

are distinct. A path is a walk in which all vertices are distinct. A cycle (circuit) is a closed path. A cycle of length k is 

called a k-cycle.  

 

Definition 1.4.4  

A graph G(V,E) is said to be connected if there is a path between any two of its vertices.  

 

Definition 1.4.5  

The girth of a graph G(V,E) is the length of the shortest cycle if any in G(V,E).  

 

Definition 1.4.6  

A graph in which every vertex has the same degree is called a regular graph.  

 

Definition 1.4.7  

A digraph or a directed graph consists of a finite non-empty vertex set V(G) together with a prescribed collection X of 

ordered pairs of distinct vertices. The elements of X are directed lines or arcs.  

  

1.5 Suborbits and suborbital graphs Definition 1.5.1  

Let G be transitive on X and let Gx be the stabilizer of a point x∈ X. the orbits  △0 = {x}, △1,△2, … ,△r−1 of Gx on X are 

called the suborbits of G. The rank of G is r and the sizes  ni = |△i| (i= 0,1,2,…,r-1) often called the lengths of the suborbits, 

are known as subdegrees of G.  

It is worth while noting that both r and the cardinalities of the suborbits △i(i= 0,1,…, r-1) are independent of the choice 

of x ∈ X.  

  

Definition 1.5.2  

Let  △ be an orbit of Gx on X. define  △∗ = {gx|g ∈ G , x ∈ g △}, then △∗ is also an orbit of Gx and is called the Gx – 

orbit (or the G-suborbit) paired with △.  

Clearly |△| = |△∗ | . If △∗ = △, then △ is called a self-paired orbit of Gx.  

  

Theorem 1.5.3 [Wielandt,1964,Section 16.5]  

Gx has an orbit different from {x} and paired with itself if and only if G has even order. Observe that G acts on X×X by  

g(x,y) = (gx,gy), g∈ G, x,y ∈ X.  

If O ⊆ X×X is a G-orbit, then for a fixed x ∈ X,  △ = {𝑦 ∈ X|(x,y) ∈ O } is a  Gx- orbit.  

Conversely, if  △ ⊆ X is a Gx- orbit, then  O = {gx, gy)| g ∈ G, y ∈ △ } is a G-orbit on X×X. We say △ corresponds to 

O.  
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Theorem 1.5.5. [Sims,1967]  

Let G be transitive on X. Then G is primitive if and only if each suborbital graph   Γ𝑖 (I = 1, 2, …, r-1), is connected.  

  

2.0 ACTION OF THE SYMMETRIC GROUP 𝐒𝐧 ON ORDERED PAIRS  

In this part, we investigate the action of G = Sn on X[2], the set of ordered  pairs from  X = {1,2, … , n}. We also construct 

and discuss the suborbital graphs associated with this action.  

Now,  G acts on the set X , of all ordered pairs from X by the rule;  

g(x,y) = (gx,gy) ,  G and   . 

 

This part is divided into two Sections. Section 2.1 deals with some general results of permutation groups acting on X[2]. 

Section 2.2 deals with the suborbits of Sn (n = 3, 4, 5) acting on X[2] and the corresponding suborbital graphs.  

 

2.1 SOME GENERAL RESULTS OF PERMUTATION GROUPS ACTING ON 𝐗[𝟐]  

The following two Theorems whose proofs are given will be very useful in the entire part, for the calculations of the 

number of ordered pairs fixed by g; that is   

|Fix (g)| and the number of permutations in G fixing (a, b) and having the same cycle type as g  G respectively.  

 

Theorem 2.1.1  

Let G be a symmetric group Sn acting on the set X={1,2, … , n} and g  G have  cycle  type    

Then |Fix (g)| in X  is given by                       

. 

Proof  

For g  G and having cycle type  to fix an ordered pair (a,b) then  both a and b must come from cycles of 

length 1.  

In this case the number of ordered pairs fixed   

by g is  

 

Theorem 2.1.2  

Let G be a symmetric group Sn acting on the set X = {1,2,3, … , n}  and let g  G have cycle type  

 .  

Then the number of permutations in G fixing (a, b) and having the same cycle type as g is given by  

 
Proof  

For a permutation in G having cycle type   to fix  then a and b must come from single cycles. The 

number of permutations in Sn of cycle type   fixing (1,2) is the same as the number of permutations in 

Sn−2 of cycle type . Now by Theorem 1.3.10, this number is                                                   

            
  

2.2 SUBORBITS OF Sn (3, 4, 5) ACTING ON   𝐗 [𝟐] AND THE CORRESPONDING SUBORBITAL GRAPHS  

  

2.2.1 SUBORBITS OF G = S3 ACTING ON 𝐗[𝟐] AND THE CORRESPONDING SUBORBITAL GRAPHS Lemma  

2.2.1.1  

G acts transitively on X [2].  

Proof  

Let g  G have cycle type , then the number of permutations in G   

having the same cycle type as g is given by Theorem 1.3.10.  The number of elements in X[2] fixed by g is given by 

Theorem 2.1.1.  

 We now have the following table;  
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Table 1: Permutations in G and the number  of points fixed by g ∈ 𝐆  

 

 
Now, applying Cauchy – Frobenius  Lemma we have  the number of orbits of G acting  on X[2]  

 
 

Therefore G acts transitively on X[2]               

  

Alternatively we can use the Orbit –Stabilizer Theorem (Theorem 1.3.9) to prove the lemma above.  In this case we need 

to show that the length of the orbit of a point say (1, 2) ∈ X[2] is 6, the same  as the number of points  in X[2]. Meaning 

that the action of G on X[2] has only one  orbit.  

Let g ∈ G have cycle type (∝1,∝2, ∝3).  Then the number of permutations in G fixing (1, 2) and having the same cycle 

type as g is given by Theorem 2.1.2.     

We now have the following table;  

 

Table 2: Number of permutations in G fixing (1,2)   

 
 

Therefore |stabG (1,2)| =1  

Now, applying the Orbit – Stabilizer Theorem, we get   

              |OrbG(1,2)| =  |G ∶ StabG(1,2)|  

 
Thus the orbit of (1, 2) is the whole of  X[2] and  therefore  G   acts  transitively on  X[2].        

 

Lemma 2.2.1.2  

The number of orbits of G(1,2) acting on X[2] is 6.  

Proof  

The Cauchy- Frobenius Lemma helps in counting the number of orbits.  

The second and the third columns of the following table can be got by applying Theorems 2.1.2 and 2.1.1 respectively.  

 

Table 3: Permutations in 𝐆(𝟏,𝟐) and the number of fixed points  

Permutation g in 𝐺(1,2)  No. of permutations  |Fix (g)|in X[2]  

 1  1            6  

  

By Cauchy –Frobenius Lemma, we have   

| OrbG(1,2)(1,2)| = 6  

Thus the rank of G acting on  X[2] is 6.                             These six orbits are;   

 OrbG(1,2)(1,2) =  {(1,2)} = ∆𝑜, the trivial orbit.  

 OrbG(1,2)(2,1) = {(2,1)} = ∆1, the transpose of the trivial orbit.  

 OrbG(1,2)(1,3) =  {(1,3)} = ∆2, the set of all ordered pairs containing exactly one 1 and of the form (1,a) where a ≠ 2.  

 OrbG(1,2)(3,1) = {(3,1) }= ∆3, the set of all ordered pairs containing exactly one I and of the form (a,1), a ≠ 2, the transpose  

of (1,a).  

 OrbG(1,2)(2,3) = {(2,3) } = ∆4, the set of all ordered pairs containing exactly one 2 and of the form (2,b), where b≠1.  

 O𝑟𝑏G(1,2)(3,2) = {(3,2)} = ∆5, the set of all ordered pairs containing exactly one 2 and of the form (b,2) , b≠1, the transpose  

of (2,b).  

Thus, the subdegrees of G on  X[2] are 1,1,1,1,1,1.  
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We now discuss the suborbital graphs corresponding to the   suborbits determined above.  

The suborbital graph corresponding to ∆𝑜 is the null graph.  We now consider the remaining suborbits   

∆1, ∆2, ∆3,∆4 and ∆5 as  follows;  

Let V and W be any two distinct ordered pairs from X = {1,2,3}; then   

(a)  The suborbital O1 = {(g(1,2),g(2,1))|g ∈ G} (see Section 1.5).  

The suborbital graph Γ1 corresponding to the  suborbital O1 has a directed edge from the  ordered pair V to the ordered  

pair W if and only if the first co-ordinate of V is identical to the second  co-ordinate of W and the second co-ordinate of 

V is identical to the first co-ordinate of W.  

 

Figure 1: The suborbital graph 𝚪𝟏 corresponding to the suborbital 𝐎𝟏  

  

              (1,2)               (2,1)  

   
 

(1,3)                                      (2,3)  

  

  

  

  

  

                  

  

  

  

    (3,1)                                                                                (3,2)  

  

 

Γ1 is disconnected , regular of degree 1.  Γ1 is also undirected since its corresponding  suborbit is self-paired.  

  

(b)  The suborbital O2 corresponding to the suborbit  is  O  = .  

The suborbital graph Γ2 corresponding to the suborbital O  has a directed edge from the ordered pair V  to the ordered  

pair W  if and only if the first co-ordinate of V is identical to the first co-ordinate of W and the second co-ordinate of V 

is not identical to the second  co-ordinate of W.  

 

Figure 2: The suborbital graph 𝚪𝟐 corresponding to the suborbital 𝐎𝟐  

 
 

       (3,2)                                 (2,3)    

   
         

     (3,1)                                                        (2,1)  

Γ2 is disconnected , regular of degree 1.  It is also undirected since its corresponding suborbit is self –paired.  

  

(c ) The suborbital O  corresponding to the suborbit  

  ∆3 is O  = .  

The suborbital graph  corresponding  to the suborbital O3 has a directed edge from the ordered pair V to the ordered 

pair W, if and only if the first co-ordinate of V is identical  to the second co-ordinate of W and the second  coordinate of 

V is not  identical to the first co-ordinate of W.  
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Figure 3:  The suborbital graph 𝚪𝟑  corresponding to the Suborbital 𝟎𝟑  

  

(1,2)                                                                     (3,1) 

 
 

         (3,2)                                            (2,1) 

  

Γ3 is directed and disconnected. Its girth is 3.  

  

(d) The suborbital O4 corresponding to the suborbit is = .  

The suborbital graph Γ4 corresponding to the suborbital O  has a directed edge from the  ordered  pair V to the ordered 

pair W if and only if the second  co-ordinate  of V is identical to the first  co-ordinate of W and the first co-ordinate of V 

is not identical to the second co-ordinate of W.  

 

Figure 4: The suborbital graph 𝚪𝟒 corresponding to the suborbital 𝟎𝟒  

 

 
Γ4 is directed and disconnected. Its girth is 3.  

Note that O3 and O4 are paired with each other.  

  

  

(e)   The suborbital O5  corresponding to the suborbit ∆5 is O5 = {(g(1,2), g(2,3)|g .  

The  suborbital graph Γ5 corresponding to the suborbital O5 has  a directed  edge from the  ordered pair V to ordered pair 

W  if and only if the second co-ordinate of V is  identical to the second  co-ordinate of W and the first  co-ordinate of V 

is not identical to the first co-ordinate of W.  

  

  

  

  

              ( 3 , 1 )   
                     

                       

  

  

                                                         

    

  

  

                    (2 ,3)  
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Figure 5: The suborbital graph 𝚪𝟓 corresponding to the suborbital 𝐎𝟓  

 
(2,1)                                        (2,3) 

 
(3,1)                                                                             (1,3) 

Γ5 is disconnected , regular of degree 1.  Γ5 is also undirected since its corresponding suborbit is self-paired.  

  

Since all the suborbital graphs are disconnected, G acts imprimitively on the set of ordered pairs from  X = {1,2,3}.    

  

2.2.2 SUBORBITS OF G = S4 ACTING ON 𝐗[𝟐]  AND THE CORRESPONDING  SUBORBITAL GRAPHS 

Lemma 2.2.2.1  

G acts transitively on X[2].   

Proof  

Let g ∈ G have cycle type ( ∝1,∝2, ∝3, ∝4), then the number of permutations in G having the same cycle type as g is given 

by   Theorem 1.3.10.   

The number of elements in X[2]  fixed by g is given by Theorem 2.1.1.  

We now have the following table;  

  

Table 1: Permutations in G and the number of points fixed by g ∈ G  

 
Now applying Cauchy-Frobenius Lemma we have the number of orbits of G acting on X[2]  

 
Therefore G  acts transitively on X[2].     

 
  

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.3.9) to prove the Lemma above. In this case we need 

to show that the length of the orbit of a point say (1,2) ∈  X[2] is 12, the same as the number of points in X[2], meaning that 

the action of G on X[2] has only one orbit.  

Let g∈ G have cycle type (∝1, ∝2,∝3, ∝4), then the number of permutations in G fixing (1,2) and having the same cycle 

type as g is given by  Theorem 2.1.2  

We now have the following table;  
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Table 2:  Number of permutations in G fixing (1,2)  

                                               Permutation                   |Fix (g)| in X[2]      Cycle type (∝1,∝2, ∝3, ∝4) 

                                                     1                                        1              (4,0,0,0) 

(ab) 

(abc) 

1 

0 

(2,1,0,0) 

(1,0,1,0) 

(abcd) 0 (0,0,0,1) 

(ab)(cd) 0 (0,2,0,0) 

                                                   Total                                        2 

  

Therefore |stabG(1,2)| = 2  

Now, applying the Orbit-Stabilizer Theorem, we get  

 
Thus the orbit of (1,2) is the whole of  X[2].       

  

Lemma 2.2.2.2  

The number of orbits of  G(1,2) acting on X[2] is 7.  

Proof  

The Cauchy – Frobenius Lemma helps in counting the number of orbits.  

The second and the third columns of the following table can be got by applying Theorems 2.1.2 and 3.1.1 respectively.  

 

Table 3 Permutations in 𝐆(𝟏,𝟐) and the number of fixed points  

 
|G(1,2)| =  2.  

By the Cauchy − Frobenius Lemma,we have   

 
Therefore the rank of G acting on X[2]  is 7.                            

These seven orbits are;  

OrbG(1,2)(1,2) =  {(1,2)} = ∆0, the trivial orbit.  

OrbG(1,2)(2,1) =  {(2,1)} = ∆1, the transpose of the trivial orbit.  

OrbG(1,2)(1,3) =  {(1,3), (1,4) } = ∆2, the set of all ordered pairs containing exactly one  1  and of the form  

(1,a),  a ≠ 2.  

OrbG(1,2)(3,1) =  {(3,1), (4,1) } = ∆3, the set of all ordered pairs containing exactly one 1 and of the (a,1), a ≠ 2, the transpose 

of (1,a).  

OrbG(1,2)(2,3)  =  {(2,3), (2,4) } = ∆4, the set of all ordered pairs containing exactly one 2 and of the form (2,b),  b ≠ 1.  

OrbG(1,2)(3,2)  =  {(3,2), (4,2) } = ∆5, the set of all ordered pairs containing exactly one 2 and of the form (b,2),  b ≠ 1, the 

transpose of (2,b).  

OrbG(1,2)(3,4)  =  {(3,4), (4,3) } = ∆6,  the set of all ordered pairs containing neither 1 nor 2.  

Therefore the subdegrees of G acting on X[2]  are 1, 1, 2, 2, 2, 2, and 2.  

  

We now discuss the suborbital graphs corresponding to the suborbits determined above.  

The suborbital graph corresponding to ∆𝑜 is the null graph.  

We now, construct the suborbital graphs corresponding to the suborbits ∆1 , ∆2, ∆3, ∆4, ∆5 and ∆6 as follows; Let V and W 

be any two distinct ordered pairs from X = {1,2,3,4}. Then  

(a) The suborbital O1 corresponding to the suborbit ∆1 is O1 = {(g (1,2),g(2,1))|g ∈ G } (see Section 1.5).  

Therefore in Γ1, the suborbital graph corresponding to O1, there is a directed edge form V to W if and only if the first co-

ordinate of V is identical to the second co-ordinate of W and the second co-ordinate of V is identical to the first co-

ordinate of W.  
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Figure 1:  The suborbital graph 𝚪𝟏 corresponding to the suborbital 𝐎𝟏  

 
Γ1 is disconnected and regular of degree 1. Γ1 is also undirected since its corresponding suborbit is self-paired.  

 

(b)The suborbital O2 corresponding to the suborbit Δ2 is O2 = {(g (1,2),g(1,3)) |g ∈ G}.  

The suborbital graph Γ2 corresponding to the suborbital O2 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the first coordinate of V is identical to the first co-ordinate of W and the second co-ordinate of V is not 

identical to the second co-ordinate of W.  

  

Figure 2: The suborbital graph 𝚪𝟐 corresponding to the suborbital 𝐎𝟐  

 
(1,2)     (1,4) 

                                                                      

 
                (1,3)  

Γ2 is disconnected and regular of degree 2. Γ2 is also undirected since its corresponding suborbit is self-paired.   Its girth 

is 3.  

(c) The suborbital O3 corresponding to the suborbit Δ3 is  O3 = {(g (1,2),g(1,3))|g ∈ G}.  

Therefore, the suborbital graph Γ3 corresponding to O3  has a directed edge from V to W if and only if the first co-ordinate 

of V is identical to the second co-ordinate of W and the second co-ordinate of V is not identical to the first co-ordinate of 

W.  
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Figure 3: The suborbital graph 𝚪𝟑 corresponding to the suborbital 𝐎𝟑 

 

 
Γ3 is directed, it is disconnected.   

Its girth is 3.  

(d) The suborbital O4 corresponding to the suborbit Δ4 is O4 = {(g (1,2),g(1,3))|g ∈ G}.  

The suborbital graph Γ4 corresponding to the suborbital O4 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the second co-ordinate of V is identical to the first co-ordinate of W and the first co-ordinate of V is not 

identical to the second co-ordinate of W.  

 

Figure 4: The suborbital graph 𝚪𝟒 corresponding to the suborbital 𝐎𝟒 

  (1,2)  

             
Γ4 is directed, it is disconnected.  

Its girth is 3.  

Note that O3 and O4 are paired with each other.  

(e) The suborbital O5 corresponding to the suborbit Δ5 is O5 = {(g(1,2), g(3,2))|g ∈ G }.  
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The suborbital graph Γ5 corresponding to the suborbital O5 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the second co-ordinate of V is identical to the second co-ordinate of W and first co-ordinate of V is not 

identical to the first co-ordinate of W.  

 

Figure 5 The suborbital graph 𝚪𝟓 corresponding to the suborbital 𝐎𝟓 

 

 
Γ5 is disconnected, regular of degree 2. Γ5 is also undirected since its corresponding suborbit is self-paired. Its girth is 3.  

(f)  And finally, the suborbital O6 corresponding to the suborbit Δ6 is   

O6 = {(g(1,2), g(3,4))|g ∈ G}. 

The suborbital graph corresponding to the suborbital O6 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the co-ordinates of V are not identical to the co-ordinates of W.  

  

Figure 6: The suborbital graph corresponding to the suborbital 𝐎𝟔  

 
Γ6 is disconnected, regular of degree 2. Γ6 is also undirected since its corresponding suborbit is self-paired.    Its girth is 

4.  

Since the suborbital graphs Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 are all disconnected, G acts imprimitively on the set of all ordered 

pairs from X = {1,2,3,4}.  

  

2.2.3 SUBORBITS OF G = S5 ACTING ON 𝐗[𝟐] AND THE CORRESPONDING SUBORBITAL GRAPHS Lemma 

2.2.3.1  

G acts transitively on X[2].  

Proof  

Let g∈ G have cycle type ( ∝1, ∝2, ∝3, ∝4, ∝5). Then the number of permutations in   

  

G having the same cycle type as g is given by Theorem 1.3.10  

  

The number of elements in X[2] fixed by g is given by Theorem 2.1.1.  

   

We now have the following table;  
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Table 1: Permutations in G and the number of points fixed by g ∈ 𝐆  

 
Now, applying Cauchy- Frobenius Lemma we obtain; number of orbits of G acting on X[2] 

|Fix (g)| 

+ (20𝑥2)] 

1. 

Therefore G acts transitively on X[2].      

  

Alternatively we can use the Orbit-Stabilizer Theorem (Theorem 1.3.9) to prove the lemma above. In this case we need 

to show that the length of the orbit of a point say (1,2) ∈ X[2] is 20, the same as the number of points in X[2], meaning that 

the action of G on 𝑋[2] has only one orbit.  

Let g∈G have cycle type (∝1,∝2,∝3, ∝4, ∝5), then the number of permutations in G   

fixing (1,2) and having the same cycle type as g is given by Theorem 2.1.2  

We now have the following table;  

 

Table 2: Number of permutations in G fixing (1,2)  

       Permutation type                   No. fixing (1,2)  Cycle type (∝1,∝2, ∝3, ∝4, ∝5) 

1 

(ab) 

1 

3 

(5,0,0,0,0) 

(3,1,0,0,0) 

(abc) 2 (2,0,1,0,0) 

(abcd) 0 (1,0,0,1,0) 

(abcde) 0 (0,0,0,0,1) 

(ab) (cd) 0 (1,2,0,0,0) 

(ab) (cde) 0 (0,1,1,0,1) 

                                          Total                                            6 

  

Therefore |stabG(1,2)| = 6.  

Now applying the Orbit-Stabilizer Theorem we get  

 
Thus the orbit of (1,2) is the whole of X[2]. Therefore G acts transitively on X[2].      

  

Lemma 2.2.3.2  

The number of orbits of G(1,2) acting on X[2] is 7.   

Proof  

The Cauchy-Frobenius Lemma helps in counting the number of orbits.  

The second and the third columns of the following table can be got by applying Theorems 2.1.2 and 2.1.1 respectively.  

 

Table 3: Permutations in 𝐆(𝟏,𝟐) and the number of fixed points  

 
By Cauchy-Frobenius Lemma, we have  

|OrbG(1,2)(1,2) | =  |G|(1G,|2)|  ∑|Fix (g)| 

=   

=   42 = 7. 

Therefore the rank of G acting of  X[2] is 7.    

These seven orbits are;  

OrbG(1,2)(1,2)  =  {(1,2) }= ∆0, the trivial orbit.  
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OrbG(1,2)(2,1) =  {(2,1) }= ∆1, the transpose of the trivial orbit.  

OrbG(1,2)(1,3) =  {(1,3), (1,4), (1,5) } = ∆2, the set of all ordered pairs containing exactly one 1 and of the form (1,a),  a ≠ 

2.  

OrbG(1,2)(3,1) =  {(3,1), (4,1), (5,1) } = ∆3, the set of all ordered pairs containing exactly one 1 and of the form (a,1), a≠ 2, 

the transpose of (1,a).  

OrbG(1,2)(2,3) =  {(2,3), (2,4), (2,5) } = ∆4, the set of all ordered pairs containing exactly one 2 and of the form (2,b),  b≠ 

1.  

OrbG(1,2)(3,2) =  {(3,2), (4,2), (5,2, ) } = ∆5, the set of all ordered pairs containing exactly one 2 and of the form (b,2),  b≠ 

1, the transpose of (2,b)  

OrbG(1,2)(3,4) = {(3,4), (3,5), (4,3), (4,5), (5,4) } = ∆6, the set of all ordered pair containing neither 1 nor 2. Thus the 

subdegrees of G acting on X[2] are 1, 1, 3, 3, 3, 3, and 6.  

  

Now, we discuss the suborbital graphs corresponding to the suborbits determined above. The suborbital graph 

corresponding to ∆0 is the null graph. We are now left with the suborbits  ∆1,∆2, ∆3, ∆4, ∆5 and ∆6.  

Since  |G(1,2)| = 6 is even, by Theorem 1.5.3,  G(1,2) has at least an orbit different from ∆0 which is paired with itself. In fact 

∆1,∆2, ∆5, and ∆6 are self-paired.  

By the theory developed in Section 1.5, the suborbital graphs corresponding to these suborbits are undirected.  

∆3 and ∆4 are not self-paired. In fact they are paired with each other.  

The suborbital graphs corresponding to the suborbits ∆3 and ∆4 are directed.  

We now describe how to construct these suborbital graphs.  

Let V and W be any two distinct ordered pairs from X = {1,2,3,4,5}. Then  

 

(a) The suborbital O1 corresponding to the suborbit ∆1 is   

O1 = {(g(1,2), g(2,1))|g ∈ G}   (See section 1.5).  

In  Γ1 the suborbital graph corresponding to O1, there is a directed edge from ordered pair V to ordered pair W if and only 

if the first co-ordinate of V is identical to the second co-ordinate of W and the second co-ordinate of V is identical to the 

first co-ordinate of W.  

Γ1 has no cycles. It is disconnected and regular of degree 1.  

 

(b) The suborbital O2 corresponding to the suborbit ∆2  is  O2  = {(g(1,2), g(1,3))|g ∈ G}  

In Γ2 the suborbital graph corresponding to O2 has a directed edge from the ordered pair V to the ordered pair W if and 

only if the first co-ordinate of V is identical to the first co-ordinate of W and the second co-ordinate of V is not identical 

to the second co-ordinate of W.  

The graph Γ2 is undirected since O2 is self-paired. It is disconnected, regular of degree 2. Its girth is 3.  

 

(c) The suborbital O3 corresponding to the suborbit ∆3  is O3  = {(g(1,2),g(3,1))|g ∈ G}.  

Therefore, the suborbital graph Γ3 corresponding to O3 has a directed edge from the ordered pair V to the ordered pair W 

if and only if the first co-ordinate of V is identical to the second  co-ordinate of W and the second co-ordinate of V is not 

identical to the first co-ordinate of W. The suborbital graph Γ3 is directed.  

 

(d)The suborbital O4 corresponding to the suborbit ∆4 is O4 = {(g(1,2), g(2,3))|g ∈ G}.  

The suborbital graph Γ4 corresponding to the suborbital O4 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the second co-ordinate of V is identical to the first co-ordinate of W and the first co-ordinate of V is not 

identical to the second co-ordinate of W.  The suborbital graph Γ4 is directed.  

 

(e) The suborbital O5 corresponding to the suborbit ∆5 is O5 = {(g(1,2), g(3,2))|g ∈ G}.  

The suborbital graph  Γ5 corresponding to the suborbital O5 has a directed edge from the ordered pair V to the ordered 

pair W if and only if the second co-ordinate of V is identical to the second co-ordinate of W and the first co-ordinate of 

V is not identical to the first co-ordinate of W.  

Γ5 is undirected. It is disconnected. It is regular of degree 2. Its girth is 3.  

 

(f) Finally, the suborbital O6 corresponding to the suborbit ∆6 is O6 = {(g(1,2), g(3,4))|g ∈ G}.  

The suborbital graph Γ6 corresponding to the suborbital O6 has a directed edge from the ordered pair V to the ordered pair 

W if and only if the co-ordinates of V are not identical to the co-ordinates of W.  Γ6 is undirected, it is disconnected and 

regular of degree 2. Its girth is 4.  

The suborbital graphs Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 are all disconnected. Therefore G acts imprimitively on the set of all ordered 

pairs from X = {1,2,3,4,5}.  

  

CONCLUSIONS  

In this research paper, we have discussed some properties of Sn, (n = 3, 4, 5) acting on ordered pairs.  

We found out that Sn  (n = 3, 4, 5) acts on X[2] transitively but not primitively.  

The rank of S3 is 6 and has subdegrees 1,1,1,1,1,1. The suborbital graphs corresponding to the five non-trivial suborbits 

are:  Γ1, Γ2,  Γ5, which are undirected and Γ3  and  Γ4  which are  directed.  

S4 and S5 each has a rank of 7. Their subdegrees are 1,1,2,2,2,2,2 and 1,1,3,3,3,3,6 respectively.  
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The suborbital graphs of the non-trivial suborbits for S4 and S5 are all disconnected.   

Their suborbital graphs Γ1, Γ2, Γ5, Γ6 are all undirected since their corresponding suborbits are self-paired while Γ3 and Γ4  

are directed. In fact Γ3 and Γ4 are paired with each other.  

From this work and what was done by others on S6 and S7, we can conjecture that Sn (n ≥ 4)   acts on X[2] transitively and 

the rank is 7.Finally we also conjecture that the subdegrees, when Sn  (n ≥ 4)  acts on X[2] are:  
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